## CHAPTER 6 LINEAR REGRESSION AND CORRELATION

Page
Contents 6.1 Introduction ..... 102
6.2 Curve Fitting ..... 102
6.3 Fitting a Simple Linear Regression Line ..... 103
6.4 Linear Correlation Analysis ..... 107
6.5 Spearman's Rank Correlation ..... 111
Exercise ..... 114

Objectives: In business and economic applications, frequently interest is in relationships between two or more random variables, and the association between variables is often approximated by postulating a linear functional form for their relationship.

After working through this chapter, you should be able to:
(i) understand the basic concepts of regression and correlation analyses;
(ii) determine both the nature and the strength of the linear relationship between two variables.

### 6.1 Introduction

This chapter presents some statistical techniques to analyze the association between two variables and develop the relationship for prediction.

### 6.2 Curve Fitting

Very often in practice a relation is found to exist between two (or more) variables.
It is frequently desirable to express this relationship in mathematical form by determining an equation connecting the variables.

To aid in determining an equation connecting variables, a first step is the collection of data showing corresponding values of the variables under consideration.


Figure 1. Scatter diagram

### 6.3 Fitting a Simple Linear Regression Line

To determine from a set of data, a line of best fit to infer the relationship between two variables.

### 6.3.1 The Method of Least Squares



Figure 2. Sample observations and the sample regression line

Determining the line of "best fit":

$$
\hat{y}=a+b x
$$

by minimizing $\sum E_{i}^{2}$.
To minimize $\sum E_{i}^{2}$, we apply calculus and find the following "normal equations":

$$
\begin{gather*}
\sum y=n a+b \sum x  \tag{1}\\
\sum y x=a \sum x+b \sum x^{2}
\end{gather*}
$$

Solve (1) and (2) simultaneously, we have:

$$
\begin{gathered}
b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
a=\frac{\sum y}{n}-b \frac{\sum x}{n}
\end{gathered}
$$

Notes:

1. The formula for calculating the slope $b$ is commonly written as

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

which the numerator and denominator then reduce to formulas

$$
\begin{aligned}
\sum(x-\bar{x})(y-\bar{y}) & =\sum(x y-\bar{x} y-x \bar{y}+\bar{x} \bar{y}) \\
& =\sum x y-\bar{x} \sum y-\bar{y} \sum x+\sum \bar{x} \bar{y} \\
& =\sum x y-n \bar{x} \bar{y}-n \bar{x} \bar{y}+n \bar{x} \bar{y} \\
& =\sum x y-n \bar{x} \bar{y}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum(x-\bar{x})^{2} & =\sum\left(x^{2}-2 x \bar{x}+\bar{x}^{2}\right) \\
& =\sum x^{2}-2 \bar{x} \sum x+\sum \bar{x}^{2} \\
& =\sum x^{2}-2 n \bar{x}^{2}+n \bar{x}^{2} \\
& =\sum x^{2}-n \bar{x}^{2}
\end{aligned}
$$

respectively; and $a=\bar{y}-b \bar{x}$ is the y-intercept of the regression line.
2. When the equation $\hat{y}=a+b x$ is calculated from a sample of observations rather than from a population, it is referred as a sample regression line.

## Example 1

Suppose an appliance store conducts a 5-month experiment to determine the effect of advertising on sales revenue and obtains the following results

| Month | Advertising Expenditure <br> (in $\$ 1,000$ ) | Sales Revenue <br> (in \$10,000) |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 2 | 1 |
| 3 | 3 | 2 |
| 4 | 4 | 2 |
| 5 | 5 | 4 |

Find the sample regression line and predict the sales revenue if the appliance store spends 4.5 thousand dollars for advertising in a month.

From the data, we find that

$$
n=5, \sum x=15, \sum y=10, \sum x y=37, \sum x^{2}=55 .
$$

Hence $\bar{x}=\frac{\sum x}{n}=\frac{15}{5}=3$ and $\bar{y}=\frac{\sum y}{n}=\frac{10}{5}=2$.
Then the slope of the sample regression line is

$$
\begin{aligned}
b & =\frac{\sum x y-n \bar{x} \bar{y}}{\sum x^{2}-n \bar{x}^{2}} \\
& = \\
& =
\end{aligned}
$$

and the y-intercept is

$$
\begin{aligned}
a & =\bar{y}-b \bar{x} \\
& = \\
& =
\end{aligned}
$$

The sample regression line is thus

$$
\hat{y}=
$$

So if the appliance store spends 4.5 thousand dollars for advertising in a month, it can expect to obtain $\hat{y}=$ dollars as sales revenue during that month.

## Example 2

Obtain the least squares prediction line for the data below:

|  | $y_{i}$ | $x_{i}$ | $x_{i}^{2}$ | $x_{i} y_{i}$ | $y_{i}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 101 | 1.2 | 1.44 | 121.2 | 10201 |
|  | 92 | 0.8 | 0.64 | 73.6 | 8464 |
|  | 110 | 1.0 | 1.00 | 110.0 | 12100 |
|  | 120 | 1.3 | 1.69 | 156.0 | 14400 |
|  | 90 | 0.7 | 0.49 | 63.0 | 8100 |
|  | 82 | 0.8 | 0.64 | 65.6 | 6724 |
|  | 93 | 1.0 | 1.00 | 93.0 | 8649 |
|  | 75 | 0.6 | 0.36 | 45.0 | 5625 |
|  | 91 | 0.9 | 0.81 | 81.9 | 8281 |
|  | 105 | 1.1 | 1.21 | 115.5 | 11025 |
| Sum | 959 | 9.4 | 9.28 | 924.8 | 93569 |

$$
\begin{aligned}
& b=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}=\frac{10(924.8)-(9.4)(959)}{10(9.28)-(9.4)^{2}}=\frac{233.4}{4.44}=52.568 \\
& a=\frac{\sum y}{n}-b \frac{\sum x}{n}=\frac{959}{10}-52.568\left(\frac{9.4}{10}\right)=46.486
\end{aligned}
$$

Therefore, $\hat{y}=46.486+52.568 x$

## Example 3

Find a regression curve in the form $y=a+b \ln x$ for the following data:

| $x_{i}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{i}$ | 9 | 13 | 14 | 17 | 18 | 19 | 19 | 20 |


| $\ln x_{i}$ | 0 | 0.693 | 1.099 | 1.386 | 1.609 | 1.792 | 1.946 | 2.079 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{i}$ | 9 | 13 | 14 | 17 | 18 | 19 | 19 | 20 |

$\sum \ln x_{i}=10.604 \quad \sum\left(\ln x_{i}\right)^{2}=17.518$
$\sum y_{i}=129 \quad \sum\left(\ln x_{i}\right) y_{i}=189.521$

$$
\begin{aligned}
& b=\frac{n \sum(\ln x) y-\left(\sum \ln x\right)\left(\sum y\right)}{n \sum(\ln x)^{2}-\left(\sum \ln x\right)^{2}}=\frac{8(189.521)-(10.604)(129)}{8(17.518)-(10.604)^{2}}=5.35 \\
& a=\frac{\sum y}{n}-b \frac{\sum \ln x}{n}=\frac{129}{8}-5.35\left(\frac{10.604}{8}\right)=9.03
\end{aligned}
$$

Therefore, $\hat{y}=9.03+5.35 \ln x$

### 6.4 Linear Correlation Analysis

Correlation analysis is the statistical tool that we can use to determine the degree to which variables are related.

### 6.4.1 Coefficient of Determination, $\boldsymbol{r}^{2}$

Problem: how well a least squares regression line fits a given set of paired data?


Figure 3. Relationships between total, explained and unexplained variations
Variation of the $y$ values around their own mean $=\sum(y-\bar{y})^{2}$
Variation of the $y$ values around the regression line $=\sum(y-\hat{y})^{2}$
Regression sum of squares $=\sum(\hat{y}-\bar{y})^{2}$
We have:

$$
\begin{aligned}
& \sum(y-\bar{y})^{2}=\sum(\hat{y}-\bar{y})^{2}+\sum(y-\hat{y})^{2} \\
\Rightarrow \quad & 1=\frac{\sum(\hat{y}-\bar{y})^{2}}{\sum(y-\bar{y})^{2}}+\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}} \\
\Rightarrow \quad & \frac{\sum(\hat{y}-\bar{y})^{2}}{\sum(y-\bar{y})^{2}}=1-\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}} .
\end{aligned}
$$

Denoting $\frac{\sum(\hat{y}-\bar{y})^{2}}{\sum(y-\bar{y})^{2}}$ by $r^{2}$, then

$$
r^{2}=1-\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}} .
$$

$r^{2}$, the coefficient of determination, is the proportion of variation in $y$ explained by a sample regression line.

For example, $r^{2}=0.9797$; that is, $97.97 \%$ of the variation in $y$ is due to their linear relationship with $x$.

### 6.4.2 Correlation Coefficient

$$
r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left(n \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \sum y^{2}-\left(\sum y\right)^{2}\right)}}
$$

and $-1 \leq r \leq 1$.
Notes:
The formulas for calculating $r^{2}$ (sample coefficient of determination) and $r$ (sample coefficient of correlation) can be simplified in a more common version as follows:

$$
\begin{aligned}
& r^{2}=\frac{\left(\sum(x-\bar{x})(y-\bar{y})\right)^{2}}{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}=\frac{\left(\sum x y-n \bar{x} \bar{y}\right)^{2}}{\left(\sum x^{2}-n \bar{x}^{2}\right)\left(\sum y^{2}-n \bar{y}^{2}\right)} \\
& r=\sqrt{r^{2}}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}=\frac{\sum x y-n \bar{x} \bar{y}}{\sqrt{\left(\sum x^{2}-n \bar{x}^{2}\right)\left(\sum y^{2}-n \bar{y}^{2}\right)}}
\end{aligned}
$$

Since the numerator used in calculating $r$ and $b$ are the same and both denominators are always positive, $r$ and $b$ will always be of the same sign. Moreover, if $r=0$ then $b=0$; and vice versa.

## Example 4

Calculate the sample coefficient of determination and the sample coefficient of correlation for example 1. Interpret the results.

From the data we get

$$
n=5, \sum x=15, \sum y=10, \sum x y=37, \sum x^{2}=55, \sum y^{2}=26 .
$$

Then, the coefficient of determination is given by

$$
\begin{aligned}
r^{2} & =\frac{\left(\sum x y-n \bar{x} \bar{y}\right)^{2}}{\left(\sum x^{2}-n \bar{x}^{2}\right)\left(\sum y^{2}-n \bar{y}^{2}\right)} \\
& = \\
& = \\
& =
\end{aligned}
$$

and

$$
r=\quad=
$$

$r^{2}=\quad$ implies that of the sample variability in sales revenue is explained by its linear dependence on the advertising expenditure. $r=$ indicates a very strong positive linear relationship between sales revenue and advertising expenditure.

## Example 5

Interest rates ( $x$ ) provide an excellent leading indicator for predicting housing starts (y). As interest rates decline, housing starts increase, and vice versa. Suppose the data given in the accompanying table represent the prevailing interest rates on first mortgages and the recorded building permits in a certain region over a 12-year span.

| Year |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| Interest rates (\%) | 6.5 | 6.0 | 6.5 | 7.5 | 8.5 | 9.5 |
| Building permits | 2165 | 2984 | 2780 | 1940 | 1750 | 1535 |
|  | Year |  |  |  |  |  |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
| Interest rates (\%) | 10.0 | 9.0 | 7.5 | 9.0 | 11.5 | 15.0 |
| Building permits | 962 | 1310 | 2050 | 1695 | 856 | 510 |

(a) Find the least squares line to allow for the estimation of building permits from interest rates.
(b) Calculate the correlation coefficient $r$ for these data.
(c) By what percentage is the sum of squares of deviations of building permits reduced by using interest rates as a predictor rather than using the average annual building permits $\bar{y}$ as a predictor of $y$ for these data?

### 6.5 Spearman's Rank Correlation

Occasionally we may need to determine the correlation between two variables where suitable measures of one or both variables do not exist.

However, variables can be ranked and the association between the two variables can be measured by $r_{s}$ :

$$
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \text {, where } d \text { is the difference of rank between } x \text { and } y .
$$

$$
-1 \leq r_{s} \leq 1
$$

if $r_{s}$ closes to 1: strong positive association
if $r_{s}$ closes to -1: strong negative association
if $r_{s}$ closes to 0 : no association
Notes:

1. The two variables must be ranked in the same order, giving rank 1 either to the largest (or smallest) value, rank 2 to the second largest (or smallest) value and so forth.
2. If there are ties, we assign to each of the tied observations the mean of the ranks which they jointly occupy; thus, if the third and fourth ordered values are identical we assign each the rank of $\frac{3+4}{2}=3.5$, and if the fifth, sixth and seventh ordered values are identical we assign each the rank of $\frac{5+6+7}{3}=6$.
3. The ordinary sample correlation coefficient $r$ can also be used to calculate the rank correlation coefficient where $x$ and $y$ represent ranks of the observations instead of their actual numerical values.

## Example 6

Calculate the rank correlation coefficient $r_{s}$ for example 1.

| Month <br> $(1)$ | Value $x$ <br> $(2)$ | rank $(x)$ <br> $(3)$ | Value $y$ <br> $(4)$ | $\operatorname{rank}(y)$ <br> $(5)$ | $d$ <br> $(6)=(3)-(5)$ | $d^{2}$ <br> $(7)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1.5 | -0.5 | 0.25 |
| 2 | 2 | 2 | 1 | 1.5 | 0.5 | 0.25 |
| 3 | 3 | 3 | 2 | 3.5 | -0.5 | 0.25 |
| 4 | 4 | 4 | 2 | 3.5 | 0.5 | 0.25 |
| 5 | 5 | 5 | 4 | 5 | 0 | 0 |

By formula

$$
\begin{aligned}
r_{s} & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \\
& = \\
& =
\end{aligned}
$$

$r_{s}=\quad$ indicates a correlation between the rankings of advertising expenditure and sales revenue. Note that if we apply the ordinary formula of correlation coefficient $r$ to calculate the correlation coefficient of the rankings of the variables in example 6 , the result would be slightly different. Since

$$
\begin{aligned}
& n=5, \sum \operatorname{rank}(x)=15, \sum \operatorname{rank}(y)=15, \sum(\operatorname{rank}(x))(\operatorname{rank}(y))=54, \\
& \sum(\operatorname{rank}(x))^{2}=55, \sum(\operatorname{rank}(y))^{2}=54,
\end{aligned}
$$

then $r=$
which is very close to the result of $r_{s}$.

## Example 7

Calculate the Spearman's rank correlation, $r_{s}$, between $x$ and $y$ for the following data:

| $y_{i}$ | $\operatorname{rank}\left(y_{i}\right)$ | $x_{i}$ | $\operatorname{rank}\left(x_{i}\right)$ |
| :---: | :---: | :---: | :---: |$\quad\left(\operatorname{rank}\left(y_{i}\right)-\operatorname{rank}\left(x_{i}\right)\right)^{2}$.

## Example 8

The data in the table represent the monthly sales and the promotional expenses for a store that specializes in sportswear for young women.

| Month | Sales (in \$1,000) | Promotional expenses (in \$1,000) |
| :---: | :---: | :---: |
| 1 | 62.4 | 3.9 |
| 2 | 68.5 | 4.8 |
| 3 | 70.2 | 5.5 |
| 4 | 79.6 | 6.0 |
| 5 | 80.1 | 6.8 |
| 6 | 88.7 | 7.7 |
| 7 | 98.6 | 7.9 |
| 8 | 104.3 | 9.0 |
| 9 | 106.5 | 9.2 |
| 10 | 107.3 | 9.7 |
| 11 | 115.8 | 10.9 |
| 12 | 120.1 | 11.0 |

(a) Calculate the coefficient of correlation between monthly sales and promotional expenses.
(b) Calculate the Spearman's rank correlation between monthly sales and promotional expenses.
(c) Compare your results from part a and part b. What do these results suggest about the linearity and association between the two variables?

## EXERCISE: LINEAR REGRESSION AND CORRELATION

1. The grades of a class of 9 students on a midterm report $(x)$ and on the final examination $(y)$ are as follows:

| $x$ | 77 | 50 | 71 | 72 | 81 | 94 | 96 | 99 | 67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 82 | 66 | 78 | 34 | 47 | 85 | 99 | 99 | 68 |

(a) Find the equation of the regression line.
(b) Estimate the final examination grade of a student who received a grade of 85 on the midterm report but was ill at the time of the final examination.
2. (a) From the following information draw a scatter diagram and by the method of least squares draw the regression line of best fit.

| Volume of sales (thousand units) | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Total expenses (thousand \$) | 74 | 77 | 82 | 86 | 92 | 95 |

(b) What will be the total expenses when the volume of sales is 7,500 units?
(c) If the selling price per unit is $\$ 11$, at what volume of sales will the total income from sales equal the total expenses?
3. The following data show the unit cost of producing certain electronic components and the number of units produced:

| Lot size, $x$ | 50 | 100 | 250 | 500 | 1000 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Unit cost, $y$ | $\$ 108$ | $\$ 53$ | $\$ 24$ | $\$ 9$ | $\$ 5$ |

It is believed that the regression equation is of the form

$$
y=a x^{b} .
$$

By simple linear regression technique or otherwise estimate the unit cost for a lot of 400 components.
4. $\quad$ Two variables $x$ and $y$ are related by the law:

$$
y=\alpha x+\beta x^{2}
$$

State how $\alpha$ and $\beta$ can be estimated by the simple linear regression technique.
5. Compute and interpret the correlation coefficient for the following grades of 6 students selected at random.

| Mathematics grade | 70 | 92 | 80 | 74 | 65 | 83 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| English grade | 74 | 84 | 63 | 87 | 78 | 90 |

6. The following table below shows a traffic-flow index and the related site costs in respect of eight service stations of ABC Garages Ltd.

| Site No. | Traffic-flow index | Site cost (in 1000) |
| :---: | :---: | :---: |
| 1 | 100 | 100 |
| 2 | 110 | 115 |
| 3 | 119 | 120 |
| 4 | 123 | 140 |
| 5 | 123 | 135 |
| 6 | 127 | 175 |
| 7 | 130 | 210 |
| 8 | 132 | 200 |

(a) Calculate the coefficient of correlation for this data.
(b) Calculate the coefficient of rank correlation.
7. As a result of standardized interviews, an assessment was made of the IQ and the attitude to the employing company of a group of six workers. The IQ's were expressed as whole numbers within the range 50-150 and the attitudes are assigned to five grades labeled $1,2,3,4$ and 5 in order of decreasing approval. The results obtained are summarized below:

| Employee | A | B | C | D | E | F |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| IQ | 127 | 85 | 94 | 138 | 104 | 70 |
| Attitude score | 2 | 4 | 3 | 1 | 2 | 5 |

Is there evidence of an association between the two attributes?

